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The partially follower-loaded elastic double pendulum subjected to excitation of the
support, parallel to the straight upright pendulum position, is studied. The effect of
small-amplitude off-resonant (high-frequency) excitation on the linear stability and
non-linear behaviour of the pendulum, is examined. By use of the method of direct partition
of motion (DPM) [1] (Blekhman, 1994, Vibrational Mechanics), the model equations are
transformed into autonomous equations with the high-frequency excitation approximated
by equivalent static forces. Linear stability analysis shows that the support-excitation has
a stabilizing effect for most system parameters, but can also destabilize the upright
pendulum position in certain situations. Local post- and pre-critical non-linear behaviour
is analyzed by using centre manifold reduction and normal forms. Support-excitation is
seen to change the bifurcational behaviour qualitatively: e.g., supercritical bifurcations may
change to become subcritical. Chaotic behaviour of the pendulum is shown to exist for a
wider range of system parameters and initial conditions with added support-excitation,
compared to the case of a fixed support.
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1. INTRODUCTION

Linear stability and non-linear behaviour of the partially follower-loaded elastic double
pendulum is analyzed, when the support is subjected to small-amplitude off-resonant
(high-frequency) excitation, parallel to the straight upright pendulum position. This work
is an extension/supplement to the work of Thomsen [2], who studied linear stability and
non-linear (including chaotic) behaviour of the same system with a fixed support.

Structures subjected to follower-type forces are often encountered in machine industry
and in civil applications, e.g., turbo machinery and compressors subjected to fluid loading,
pipes/tubes conveying fluid and bridges, antennas and panels experiencing wind loading.
Follower forces are also found acting on aircraft wings, rockets and vertical take-off and
landing aircrafts, all of which are subjected to the thrust from jet motors. These structures
may lose the stability of the original design by dynamic instability (flutter) or by static
instability (divergence), due to the action of the follower forces. Safe structures are
designed and dimensioned to withstand the forces encountered, while retaining stability.
Often, however, these structures, in addition to the follower forces, are affected by
high-frequency excitation, e.g., coming from unbalanced rotating machinery or from the
surroundings. The presence of high-frequency excitation may change the stability
properties and also the non-linear dynamic behaviour of the structure. High-frequency
excitation could therefore also be added with the specific purpose of changing the dynamic
behaviour of the structure. A deep understanding of the interaction between forces of the
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follower-type and high-frequency excitation is thus necessary and useful for structural
design and is the motivation for this study.

A simple physical model of a follower-loaded structure is used in this study. Despite
being a simple model, the elastic double-pendulum with a partial follower-load displays
two of the basic instability mechanisms encountered in real engineering systems. The
partial follower-load allows for modelling pure conservative loads, and thus for description
of instabilities of the divergence type. The formulation also enables the modelling of
non-conservative follower-loads, and thus also flutter-type instabilities. Therefore, this
model serves well as a basic model to examine how high-frequency excitation will affect
these mentioned instability mechanisms. The double pendulum can be seen as a
two-degree-of-freedom discrete approximation of the corresponding fixed–free continuous
beam model, a system also known as Beck’s column. The behaviour of the continuous
model is closely related to the behaviour of, e.g., an aircraft wing under the action of thrust
from a jet motor, and recently the system has been subjected to experimental analysis by
Sugiyama et al. [3]. For other experimental realization and examination of structures with
follower forces; see e.g., the work by Herrmann et al. [4].

Stability of follower-loaded structures has been the subject of many investigations.
Ziegler [5] considered the linear stability of a follower-loaded double pendulum, and
Bolotin [6] thoroughly described dynamic and static instability mechanisms associated with
follower-loaded structures in general. Herrmann and Jong [7] extended the work of Ziegler
to include partially following loads. The first study of non-linear behaviour of the double
pendulum, to the author’s knowledge, was done by Roorda and Nemat-Nasser [8], where
they showed, e.g., the existence of limit cycles. Since then, a large number of papers have
been devoted to non-linear analysis of this and similar systems. References to these works
can be found in reference [2].

This work differs from previous work done on follower-loaded structures in that the
interaction between the follower forces and added off-resonant (high-frequency)
support-excitation is investigated.

Work has been done previously on structures subjected to high-frequency excitation.
The possible stabilizing effect on high-frequency excitation was pointed out by Kapitza
[9]. Even for support-excitation of small amplitude (nearly invisible to the human eye), a
hanging pendulum could be stabilized in the upright position, thus behaving as if an
invisible static torque was acting upon it. This system, now often referred to as Kapitza’s
pendulum, has later been investigated by other authors using different methods of analysis
[1, 10]. Blekhman and Malakhova [11] considered a system similar to Kapitza’s pendulum.
On the pendulum-rod, a washer, free to slide, was attached. In addition to stabilizing the
pendulum in the upright position, the washer was stabilized at a position along the rod,
as if an invisible force was acting against gravity. Similar action of vibrations has been
reported by Thomsen [12], where a mass was shown to slide slowly along a vibrating string
or beam, due to non-linear components of the vibrational force, and by Jensen [13, 14]
where fluid or flexible material was driven inside a vibrating pipe also by the action of
non-linear vibrational forces. Other interesting and sometimes even peculiar effects of
high-frequency excitation can be found in reference [1].

The paper is organized as follows. In section 2 the model is presented and the model
equations are derived. Section 3 provides a de-coupling between the fast and the slow
motions in the system by using the method of Direct Partition of Motion (DPM). This
yields a set of autonomous equations governing the essential system behaviour,
approximating the effect of the support-excitation by equivalent static forces. The region
of stability of the upright pendulum position is investigated in section 4, showing that
added support-excitation mostly stabilizes the upright position, but for certain parameter



(1–  )p

m

l

l

2m k,c

2

~
p~

~

k,c

w sin t

~

~~

1

    - 127

combinations can act destabilizing. In section 5, a local bifurcation analysis is performed
using the methods of centre manifold reduction and normal forms. The analysis shows that
the added support-excitation qualitatively changes the non-linear behaviour: e.g., by
changing bifurcation types from supercritical to subcritical. In section 6, the global
dynamic behaviour of the pendulum is analyzed numerically. Chaotic behaviour is seen
to exist for a broader parameter range when the support is subjected to the high-frequency
excitation, compared to the case of a fixed support.

2. THE MODEL AND MODEL EQUATIONS

Figure 1 shows the model. The system considered consists of two rigid massless rods
of equal length l. The rods are connected to each other and to the support by hinges with
equal linear torsional stiffness coefficient k and equal linear viscous damping coefficient
c̃. The rods carry two masses 2m and m positioned at the end of the first and second rod,
respectively. This mass distribution most closely corresponds to a continuos beam. The
angles of the rods, in respect to the straight upright position, are given as u1 and u2. The
system is subjected to a partially follower-load p̃ acting at the free rod end. The load
arrangement is characterized by the parameter a, where a=1 corresponds to pure
tangential loading and a=0 corresponds to pure conservative loading. The support is
subjected to a harmonic displacement parallel to the upright position given as w̃ sin V	 t,
where w̃ is the amplitude and V	 the frequency of displacement. Small-amplitude,
off-resonant (high-frequency) excitation is considered, implying that w̃�l and V	 �v2,
where v2 is the highest natural frequency of the pendulum.

Figure 1. The elastic partially follower-loaded double pendulum with added support-excitation.
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The kinetic energy T and the potential energy V of the system are given as, respectively,

T= 3
2ml2u� 21 + 1

2ml2(u� 22 +2u� 1u� 2 cos (u2 − u1))+ 3
2mw̃2V	 2 cos2 V	 t

−(3u� 1 sin u1 + u� 2 sin u2)mlw̃V	 cos V	 t,

V= 1
2ku2

1 + 1
2k(u2 − u1)2, D= 1

2c̃u�
2
1 + 1

2c̃(u� 2 − u� 1)2,

Q1 = p̃l((1− a) sin u1 − a sin (u2 − u1)), Q2 = p̃l(1− a) sin u2, (1)

in which the viscous dissipation function D and the generalized forces Q1 and Q2 are given
also.

The equations of motion are set up by using Lagrange’s equations:

d
dt

1(T−V)
1u� i

−
1(T−V)

1ui
+

1D
1u� i

=Qi , i=1, 2. (2)

Applying Lagrange’s equations using equation (1), leads to the two equations of motion:

3u� 1 + (cos (u1 − u2)u� 2 + sin (u1 − u2)u� 22 )+2cu� 1 − cu� 2 +2u1 − u2

=p((1− a) sin u1 + a sin (u1 − u2))−3wV2 sin u1 sin Vt, (3)

u� 2 + (cos (u1 − u2)u� 1 − sin (u1 − u2)u� 21 )+ cu� 2 − cu� 1 − u1 + u2

=p(1− a) sin u2 −wV2 sin u2 sin Vt, (4)

where the following non-dimensional quantities have been introduced:

t0X k
ml2

t , V0Xml2

k
V	 , p0

p̃l
k

, w0
w̃
l
, c0

c̃
zkml2

. (5)

3. DIRECT PARTITION OF MOTION

The model equations (3) and (4) contain parametric excitation terms. This makes
stability analysis and non-linear analysis by using theoretical tools difficult. Also, with
high-frequency excitation, numerical integration of the equations is time-consuming due
to the necessity for small time-steps.

The method of direct partition of motion (DPM) [1], is used to eliminate the
time-dependent terms in equations (3) and (4). DPM is an averaging technique, where the
fast motion (comparable with the excitation frequency V) and the slow motion
(comparable with the natural frequencies vi , i=1, 2), are de-coupled. For this purpose
the equations of motion are rewritten in the form, with u= {u1 u2}T,

u� = f(u� , u)+Vq(u), (6)

where

f(u� , u)=
1

3−cos2 (u1 − u2) 6−sin (u1 − u2)u� 22 − 1
2 sin 2(u1 − u2)u� 21 − c(2u� 1 − u� 2)

1
2sin 2(u1 − u2)u� 22 +3 sin (u1 − u2)u� 21 +3c(u� 1 − u� 2)

− c(u� 1 − u� 2) cos (u1 − u2)− (2+cos (u1 − u2))u1 + (1+cos (u1 − u2))u2

+c(2u� 1 − u� 2) cos (u1 − u2)+ (3+2 cos (u1 − u2))u1 − (3+cos (u1 − u2))u2

+

+
+p((1− a) sin u1 + a sin (u1 − u2))− p(1− a) sin u2 cos (u1 − u2)
−p((1− a) sin u1 + a sin (u1 − u2)) cos (u1 − u2)+3p(1− a) sin u27, (7)
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q(u)=
wV

3−cos2 (u1 − u2) 6sin u2 cos (u1 − u2)−3 sin u1

3 sin u1 cos (u1 − u2)−3 sin u27 sin Vt. (8)

In equation (6), terms with explicit dependence on Vt have been collected in the vector
q= {q1 q2}T, and the remaining terms have been collected in the vector f= {f1 f2}T.

Two independent time-scales are now introduced: a slow time scale T0 0 t and a fast
time scale T1 0Vt=VT0. It is assumed that the solution to equation (6) can be written
as a sum of a ‘‘slow’’ function x(T0)= {x1(T0)x2(T0)}T and a ‘‘fast’’ function
c(T1)= {c1(T1)c2(T1)}T. The assumed solution is written on the form

u(T0, T1)= x(T0)+ oc(T1). (9)

where o0 1/V(o�1) has been introduced. It is assumed that the fast function c(T1) is a
2p-periodic function of T1 with �c�=0, where � �0 1/2p f2p

0 ( )d(T1) is a linear averaging
operator: i.e., averaging with respect to T1 over 2p (a forcing period).

The solution assumption given in equation (9) is inserted into equation (6) to yield

D2
0x+ o−1D2

1c= f(D0x+D1c, x+ oc)+ o−1q(x+ oc), (10)

where the notation Dj
i 0 1j/1Tj

i , denoting partial differentiation with respect to the
individual time-scales, has been employed.

Applying the averaging operator to both sides of equation (10) yields

D2
0x= �f(D0x+D1c, x+ oc)+ o−1q(x+ oc)�, (11)

where the following properties of the averaging operator have been used: �D2
0x�=D2

0x
and �D2

1c�=0. Equation (11) is then subtracted from equation (10) to yield

D2
1c= of(D0x+D1c, x+ oc)+ q(x+ oc)

− �of(D0x+D1c, x+ oc)+ q(x+ oc)�. (12)

Applying the first-order Taylor expansion: q(x+ oc)1 q(x)+ oc · 1q(x)/1x, yields

D2
0x= �f(D0x+D1c, x+ oc)+ o−1q(x)+c · 1q(x)/1x�, (13)

D2
1c= of(D0x+D1c, x+ oc)+ q(x)+ oc · 1q(x)/1x

− �of(D0x+D1c, x+ oc)+ q(x)+ oc · 1q(x)/1x�. (14)

The zero-order approximation: f(D0x+D1c, x+ oc)1 f(D0x+D1c, x) is now applied,
giving terms with accuracy up to the desired o0 in equation (13) and up to o1 in equation
(14). Using also �q(x)�=0, yields the following two equations:

D2
0x= �f(D0x+D1c, x)+c · 1q(x)/1x�, (15)

D2
1c= q(x)+ o[f(D0x+D1c, x)+c · 1q(x)/1x− �f(D0x+D1c, x)+c · 1q(x)/1x�].

(16)

Equations (15) and (16) constitute a coupled set of differential equations, representing an
alternative formulation of equation (6) with the assumption that the solution can be
written on the form given in equation (9), and under the additional assumptions made in
the previous derivation.
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To solve the new equations, a zero-order approximation of equation (16), D2
1c1 q(x),

is used, which gives terms of the desired accuracy e0 when substituted back into equation
(15). Solving equation (16) for c yields

c=
−wV

3−cos2 (x1 − x2) 6sin x2 cos (x1 − x2)−3 sin x1

3 sin x1 cos (x1 − x2)−3 sin x27 sin T1. (17)

Solving equation (15), using equation (17), and writing the obtained solution in the same
form as equations (3) and (4), yields the two equations governing the slow motion of the
system:

3ẍ1 + (cos (x2 − x1)ẍ2 − sin (x2 − x1)ẋ2
2 )+ c(2ẋ1 − ẋ2)+2x1 − x2

= p((1− a) sin x1 − a sin (x2 − x1))+V1, (18)

ẍ2 + (cos (x2 − x1)ẍ1 + sin (x2 − x1)ẋ2
1 )+ c(ẋ2 − ẋ1)− x1 + x2 = p(1− a) sin x2 +V2.

(19)

Here

6V1

V27=
v

(cos (2x1 −2x2)−5)3 6102 sin 2x1 −2 sin (2x1 −4x2)
sin (2x1 −4x2)+ sin (6x1 − x2)

+
−10 sin (4x1 −2x2)+20 sin (2x1 −2x2)−2 sin (4x1 −4x2)−30 sin 2x2

−10 sin (4x1 −2x2)−20 sin (2x1 −2x2)+2 sin (4x1 −4x2)+10 sin 2x27,
(20)

with

v0 3
4(wV)2, (21)

introduced as a measure of the vibrational force (the factor 3
4 is chosen merely for

convience).
The two functions Vi , i=1, 2, represent the vibrational forcing acting on the slow

motion of the system, i.e., motion comparable to the natural frequencies of the pendulum,
as a result of the high-frequency support-excitation. Note that by means of DPM the
explicit time-dependence has been eliminated in the new model equations (18) and (19).
The effect of the high-frequency excitation is instead approximated by equivalent static
forces. Except for Vi , equations (18) and (19) are identical to those found in, e.g., reference
[2], where the support was fixed.

4. LINEAR STABILITY OF THE UPRIGHT PENDULUM POSITION

From equations (18)–(20) it is noted that {x1x2}T = {0 0}T is a solution, also with added
support-excitation. In this section, the effect of the support-excitation on the linear stability
of this solution, i.e., the straight upright pendulum position, is investigated.

Linearizing equations (18) and (19) around {x1x2}T = {0 0}T and writing the equations
as a system of four first order differential equations, using the notation y= {x1 x2 ẋ1 ẋ2}T,
yields

ẏ=Ay, (22)
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Figure 2. Stability borders for the straight upright pendulum position, computed by use of equations (27) and
(28), for four different amounts of support-excitation. Solid lines: Hopf bifurcations; dashed lines: pitchfork
bifurcations; markers: stability borders calculated by numerical integration. Parameter values: c=0·1, V=25.

where

A=$ 0
−M−1K

I
−M−1C%, (23)

with 0 and I being the null and identity matrix respectively, and

M=$31 1
1%, C=$ 2c

−c
−c
c %, K=$2− p+3v

−1− v
ap−1− v

1− p(1− a)+ v%. (24)

Upon inspecting the stiffness matrix K, it is noted that the presence of support-excitation
acts, for small angles, approximately as additional springs.

Exponential time-dependence of the form y= u exp(lt) is now assumed, and inserted
into equation (22). Solving the determinant equation det(A− lI)=0, yields the
characteristic equation for the eigenvalue l,

a0l
4 + a1l

3 + a2l
2 + a3l+ a4 =0, (25)

where

a0 =2, a1 =7c, a2 =2p(a−2)+ c2 +7+8v,

a3 = c(3p(a−1)+2+3v), a4 = (3− p+4v)p(a−1)+ (2v+1)(v+1). (26)

The zero solution of equation (22) is stable only if all roots of l in equation (25) have
negative real parts. The zero solution will lose stability by a static instability, known as
divergence, if a single real eigenvalue passes the origin. The condition for this is [15]

a4 =0. (27)
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The condition for a dynamic instability, i.e., if a pair of complex conjugate eigenvalues
passes the imaginary axis, also known as a flutter instability, becomes [15]

a1a2a3 − a4a2
1 − a0a2

3 =0, a3 /a1 q 0. (28)

Figure 2 shows the regions of stability of the upright pendulum position in an (a, p)
co-ordinate-system, for four different values of the vibrational forcing parameter n. It is
also indicated whether stability of the upright position is lost by divergence (dashed lines)
or by flutter (solid lines). More detailed stability diagrams can be found in references [2, 7]
for the system without added support-excitation.

With vibrational forcing (v$ 0) added, the region of linear stability is broadened.
Stability borders are moved up (down) for pq 0 (pQ 0) respectively, especially for the
upper right divergence region, found for aq 1 1·4, pq 0. In this region, the stability of
the upright position is improved significantly with the added support-excitation. However,
as an exception, around a=1·3 the presence of vibrational forcing may destabilize the
pendulum. The stability border for flutter moves to the right for growing values of v. This
implies that loads which previously did not affect the upright position, may now cause the
pendulum to flutter (see also Figure 3).

The markers in Figure 2 represent stability borders computed by numerical integration
of the full model equations (3) and (4), using a standard Runge–Kutta algorithm. Very
good agreement is noted, indicating that DPM accurately captures the full effect of the
support-excitation in respect to linear stability.

Figure 3 shows time-series displaying how added support-excitation can both stabilize
and destabilize the upright pendulum position. Transient behaviour of the lower rod angle
u1 is shown, both for zero vibrational forcing (v=0), shown as dashed lines, and for
v=0·5, shown as solid lines. For p=2 and a=1·2 (Figure 3(a)), the initially applied
disturbance is amplified for v=0, whereas with support-excitation present the vibrations
are damped out to approach the stable zero solution. For another set of load parameters,
(a, p)= (1·32, 3) (Figure 3(b)), the upright position is stable for the stationary pendulum,
whereas when support-excitation is added, the zero solution is destabilized. This causes
the initial disturbance of the pendulum to be amplified, until the motion is finally limited
by stabilizing non-linear terms (see also section 5). In Figure 3 it is noted that the frequency
of vibrations is increased when the vibrational forcing is added. This feature is common
in systems subjected to high-frequency excitation, [1].

Figure 3. Lower rod angle u1 versus time t, based on numerical integration of equations (3) and (4). Solid
lines: v=0·5; dashed lines: v=0; (a) p=2, a=1·2; (b) p=3, a=1·32. Parameter values: c=0·1, V=25. Initial
conditions (0·05, −0·07, 0, 0).
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5. LOCAL PERIODIC AND NON-ZERO STATIC SOLUTIONS

Local bifurcations of the zero solution are now investigated by using the methods of
centre manifold reduction and normal forms. Only behaviour associated with simple
bifurcations (codimension one), i.e., either pure flutter or pure divergence, is analyzed.
Codimension two bifurcations, i.e., coupled flutter and divergence, is beyond the scope of
this paper. Emphasis is put on the qualitative effect of the added support-excitation on
the bifurcation types: i.e., whether the bifurcations are super- or subcritical. Subcritical
bifurcations are of primary interest, since, even when the upright pendulum position is
linearly stable, i.e., stable to small disturbances, a stronger disturbance may destabilize this
position.

Taylor expanding non-linear terms in equations (18) and (19) near the zero solution
{y1 y2}T = {0 0}T, and truncating the expansion for yp

i yq
j yr

k , i, j, k=1, . . . , 4,
p+ q+ rq 3, yields a system of four first order differential equations,

ẏ=Ay+ f(y), (29)

where f is a vector containing cubical non-linearities, given as

f(y)= s
4

j,k,l=1

bjklyjykyl , (30)

with the non-zero components of the vectors b given in the Appendix.
Equation (29) is now written in Jordan canonical form, by using the co-ordinate

transformation y=Pz with z= {z1 z2 z3 z4}T, yielding

ż=Lz+ g(z), (31)

where L=P−1AP and g(z)=P−1f(Pz), and P is the so-called modal matrix composed of
imaginary and real parts of the eigenvectors; see, e.g., reference [16]. The matrix L takes
the form

L=$Lcri

0
0

Lstable%. (32)

The matrix L is in block form which allows for a de-coupling of the linear part of equation
(31) into an essential part Lcri associated with the critical eigenvalues (the ones with zero
real part) and a stable part Lstable associated with eigenvalues with negative real parts. With
a subsequent de-coupling of the non-linear function g (known as the centre manifold
reduction), the essential system behaviour can be traced on a lower dimensional
sub-system. For further details see, e.g., references [17, 18]. Further simplification of the
system can then be made by using normal forms; see, e.g. reference [19]. In the following
Hopf- and pitchfork-bifurcations will be studied separately in a non-detailed manner. For
further details on the application of the methods of centre manifold reduction and normal
forms in similar systems see, e.g., references [20, 21].
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5.1.  

The non-linear dynamics associated with a Hopf bifurcation can be analyzed by
examining the two-dimensional sub-system given as, with zcri = {z1 z2}T,
gcri (z)= {g1(z) g2(z)}T,

żcri =$k

v

−v

k %zcri + gcri (z), (33)

where v and k are the imaginary and real parts of the critical eigenvalue. At the critical
point v represents the flutter frequency whereas k vanishes.

The two scalar non-linear functions g1 and g2 are still coupled to the remaining (stable)
system. As in references [20, 21], the tangent-space approximation gcri (z)1 gcri (zcri , 0) can
be applied with no additional approximations introduced. This leads to the following set
of equations:

ż1 = kz1 −vz2 + g1(z1, z2), (34)

ż2 =vz1 + kz2 + g2(z1, z2). (35)

Equations (34) and (35) are now to be simplified by using the method of normal forms.
Since the behaviour near the bifurcation point is of interest, the chosen outfolding
parameter, e.g., the load magnitude p, is perturbed so that p= pcri + d. From the
perturbation parameter d, the changes in the real and imaginary parts of the eigenalue d1

and d2 can be computed (see, e.g., references [20, 21]): i.e., for a given perturbation,

k:0+ d1, v:v+ d2. (36)

With the expressions (36) inserted and the functions g1 and g2 written out, equations (34)
and (35) then become

ż1 = d1z1 − (v+ d2)z2 + a1z3
1 + a2z2

1z2 + a3z1z2
2 + a4z3

2 , (37)

ż2 = (v+ d2)z1 + d1z2 + a5z3
1 + a6z2

1z2 + a7z1z2
2 + a8z3

2 . (38)

The constants ai , i=1, . . . , 8, depend on the system parameters. They are lengthy and
are not shown.

By using the polar co-ordinate transformation z1 = r cos f and z2 = r sin f, the normal
form of equations (37) and (38) becomes [19]

ṙ= r(d1 + ar2), f� =v+ d2 + br2, (39, 40)

where a= 1
8(3a1 + a3 + a6 +3a8) and b=−1

8(a2 +3a4 −3a5 − a7). In equations (39) and
(40), r governs the amplitude of oscillations, whereas f is the phase angle.

Steady state values of r are found by letting ṙ=0 in equation (39). Two solutions for
r (re 0) are found,

r=0, r=z−d1/a for d1/aQ 0: (41)

that is, the zero solution and a non-linear limit cycle solution. With known oscillation
amplitude r, equation (40) can be solved for the steady state phase angle velocity f� . The
obtained solution can then, if desired, be transformed back to be expressed in terms of
the original variable y.

Here the type of bifurcation is of main interest. This can be determined solely from the
constant a. For aQ 0, equation (39) predicts a supercritical Hopf bifurcation whereas
aq 0 corresponds to a subcritical bifurcation. The value of a turns out to depend strongly
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Figure 4. Maximum lower rod angle x1,max /2p versus load perturbation d for flutter instabilities, based on
numerical integration of equations (18) and (19) using PATH; (a) a=0·8 for three different values of v; and
(b) v=0·25 for three different values of a. Solid and dashed lines: stable and unstable solutions, respectively.
Hopf bifurcation: w; saddle-node bifurcation: r. Parameter values: c=0·1, V=25.

upon the amount of added support-excitation. If v is increased, a increases also, implying
that the added support-excitation might turn supercritical Hopf bifurcations into
subcritical ones.

For a=0·8, i.e., rather close to a perfectly follower-loaded system, the bifurcation is
supercritical without added support-excitation. However, the value of a is computed to
turn from negative to positive for vtrans 3 0·318, and thus subcritical bifurcations are
predicted for values of v higher than this value. Figure 4(a) shows limit cycle solutions
obtained with the algorithm PATH [22], based on numerical integration of the
autonomous model equations (18) and (19). PATH is a path-following algorithm capable
of following stable and unstable solution branches. Hopf bifurcations of the zero solution
are shown for three different values of the vibrational forcing parameter v. Figure 4(a)
shows supercritical bifurcations for the two lower values of v, and a subcritical bifurcation
of v=0·5, as predicted by the theoretical analysis. Figure 4(b) shows three Hopf
bifurcations of the zero solution for v=0·25, for three different values of a. The theoretical
value of a in this case increases for decreasing values of a, and is computed turn negative
for atrans 1 0·686. It is seen that for a=1 and a=0·8, the corresponding Hopf bifurcations
are supercritical, whereas for a=0·6 the bifurcation has turned subcritical, as predicted
by theory.

Thus, the results presented in this section show that, with sufficiently strong
support-excitation, the upright pendulum position may be destabilized in favour of flutter
oscillations by a strong disturbance, even though the upright position is linearly stable.
It should be noted also that secondary saddle-node bifurcations occur in the subcritical
cases. These secondary bifurcations are not predicted by equation (41), which is based on
a third order non-linear model, but is captured by PATH. To identify these bifurcations
theoretically, higher order approximations are called for.

5.2.  

The non-linear behaviour associated with pitchfork bifurcations is now analyzed. The
essential behaviour is governed by the critical one-dimensional sub-system given as

żcri = kzcri + gcri (z), (42)
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with zcri = {z}, gcri = {g(z)}, and where the real part of the eigenvalue k, vanishes at the
critical point. The decoupling of the non-linear function gcri (z) is, analogously to section
5.1, performed as gcri (z)1 gcri (zcri , 0), without any additional approximations introduced.
The non-linear behaviour is thus governed by the single scalar equation

ż= d1z+ az3, (43)

where the change in the real part of the eigenvalue d1 is computed from a chosen
perturbation parameter d, and a is a lengthy constant that depends on the system
parameters.

The steady state solution for z is found directly from equation (43) by letting ż=0. This
yields

z=0, z=2z−d1/a for d1/aQ 0: (44)

that is, the zero solution and two static non-zero solution branches. As in section 5.1, aQ 0
implies a supercritical bifurcation, whereas aq 0 corresponds to a subcritical bifurcation.
Also in this case the value of a depends strongly upon the amount of support-excitation:
i.e., the value of v.

Bifurcation types corresponding to the lower divergence region of Figure 2, i.e., for
aq11·1 and pQ 0, are illustrated by use of PATH, for different amounts of
support-excitation and for different values of a. Figure 5(a) shows pitchfork bifurcations
for a=1·7, for three different values of v. Only positive values of x1/2p are shown since
the curves are symmetrical around the abscissa. The transition from supercritical to
subcritical, i.e., a turning positive, is computed to occur for vtrans 1 0·255. This agrees with
what is shown in Figure 5(a). For v=0 and v=0·25 the bifurcations are supercritical and
for v=0·5, PATH shows a subcritical bifurcation. For v=0·25, the transition from super-
to subcritical is predicted to occur for atrans 1 1·600 for decreasing a. The bifurcation curves
in Figure 5(b), computed by use of PATH, show a supercritical bifurcation for a=1·7,
and for a=1·5 (and a=1·3), as predicted, subcritical ones.

Thus, also for divergence instabilities, the added support-excitation may turn
bifurcations subcritical: i.e., even with the pendulum being linearly stable, a sufficiently
strong disturbance may cause the pendulum to occupy another static point of equilibrium.

Figure 5. Lower rod angle x1/2p versus load perturbation d, for divergence instabilities, based on numerical
integration of equations (18) and (19) using PATH, (a) a=1·7 for three different vlaues of v; and (b) v=0·25
for three different values of a. Solid and dashed lines: stable and unstable solutions, respectively. Pitchfork
bifurcation: q; saddle-node bifurcation: r. Parameter values: c=0·1, V=25.
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Figure 6. Local bifurcation diagram. Solid lines: subcritical bifurcations; dotted lines: supercritical
bifurcations. Parameter values: c=0·1, V=25.

5.3.   

Sections 5.1 and 5.2 provided means for determining the type of bifurcation, i.e., either
supercritical or subcritical, of the upright pendulum position in case of linear instability.
Both the cases of Hopf birfurcations (flutter) and pitchfork bifurcations (divergence) were
treated.

The stability diagram (Figure 2) presented in section 4 is now redrawn with special
attention given to the type of bifurcations. Figure 6 shows this bifurcation diagram.
Supercritical bifurcations are represented by dotted lines, whereas solid lines represent
bifurcations of the subcritical kind. As in Figure 2, the bifurcation curves are shown for
the case of no support-excitation and for three non-zero values of the parameter v.

For v=0, supercritical bifurcations are seen to exist for most load arrangements.
However, for the upper right divergence region, as well as for a small section of the flutter
curve near the right codimension two point, the corresponding bifurcations are subcritical.
When support-excitation is added, parts of the supercritical bifurcations turn into
subcritical. This happens both for the flutter and for the divergence curves. With v=0·75
almost all bifurcations shown in Figure 6 are subcritical, except for a small part of the
upper left divergence region near the left codimension two points. Also for higher values
of v this small supercritical region prevails, with decreasing size however. It should be
remembered though, that near codimension two points even more complicated dynamics
may exist. As previously mentioned, this is not covered in this work. The transitions
between bifurcation types, as shown in Figure 6, have been verified by PATH, as
exemplified in sections 5.1 and 5.2, as well as by numerical integration of the original model
equations.
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Thus, the local bifurcation investigation has revealed that added support-excitation
tends to turn supercritical bifurcations into subcritical ones. This has shown to occur both
for divergence and for flutter instabilities.

6. GLOBAL DYNAMIC BEHAVIOUR

In section 5, local bifurcations were studied, and consequently the system behaviour near
the straight upright pendulum position. In this section, the effect of the added
support-excitation on the global dynamics of the pendulum, is studied. Special attention
is given to regions in the (a, p) co-ordinate-system with chaotic dynamics.

Two regions with possible chaotic dynamics are investigated in detail. First, the
behaviour of the pendulum with a pure tangential load, i.e., a=1, is studied. Then the
system is analyzed for the case of a=2. The two cases correspond to a free system and
a system hanging in gravity, respectively, under the action of a follower-force. In the
analysis, the maximum Lyapunov exponent l1 is used as a characteristic variable. The
values for l1 are computed by using the algorithm described by Wolf et al. [23], based on
numerical integration of the full model equations (3) and (4). Also, phase-plots are shown,
based on numerical integration of the autonomous set of equations (18) and (19).

6.1.    (a=1)
With a=1 and no support-excitation, the upright position loses stability for pcri 1 1·469

by a supercritical Hopf bifurcation, and the pendulum performs flutter oscillations for
pq pcri . Figure 7(a) shows the maximum Lyapunov exponent l1 versus the load magnitude
p with the small initial disturbance: (0·05, −0·07, 0·0). Negative values of l1 are seen for
pQ pcri indicating a static equilibrium, in this case the upright position. For pq pcri , l1

approximately vanishes which indicates periodic motion. No signs of chaotic dynamics
(l1 q 0) appears in Figure 7(a), but for very high load magnitudes (pq115), l1 turns
positive and the motion will be chaotic.

If strong support-excitation (v=2) is added (Figure 7(b)), the stability of the upright
position is increased, as seen also in Figures 2 and 6. The zero solution loses stability for
pcri 1 3·800 by a subcritical bifurcation, and is replaced by periodic oscillations of the
pendulum. For pq16·5 positive values of l1 are seen, indicating chaotic motion. Figure
7(b) was obtained with the same initial conditions as in Figure 7(a). With a larger initial

Figure 7. Largest Lyapunov exponent l1 plotted versus load magnitude p, (a) a=1, v=0; (b) a=1, v=2;
total sampling time 2000 s, transient cut-off 1000 s, sampling frequency 20 Hz. Initial conditions
(0·05, −0·07, 0, 0). Parameter values: c=0·1, V=50.
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Figure 8. Phase portraits showing lower rod angle velocity dx1/dt versus lower rod angle x1, based on
numerical integration of equations (18) and (19); (a) p=3·5, initial conditions (1, 1·5, 0·5, 0·75); (b) p=5; (c)
p=7. Parameter values: c=0·1, v=2 (V=50). Initial conditions (0·05, −0·07, 0, 0).

disturbance, periodic motion is seen also for values of p slightly less than critical due to
the subcritical bifurcation.

More detailed information about the system behaviour for v=2 (a=1) is obtained by
using the path-following algorithm PATH. For values of p near the critical value, the
bifurcational behaviour can be shown to resemble that of Figure 4(a) for v=0·5: i.e., a
stable periodic motion exists after a secondary saddle-node bifurcation of the unstable
periodic solution. In Figure 8(a) a phase-plot is shown, i.e., a post-transient plot of dx1/dt

versus x1, corresponding to this stable periodic motion. The curve is seen to be distorted
due to strong non-linearities, but the motion is still regular. If the load magnitude is
increased further, a secondary Hopf bifurcation occurs. This bifurcation results in period-3
motion, as illustrated in Figure 8(b), showing a phase-plot for p=5. If p increases even
further, yet another bifurcation occurs, now resulting in chaotic dynamics. Figure 8(c)
shows a phase-plot for p=7, showing the post-transient dynamic behaviour. The phase
plane is seen to fill out in an unpredicatable way, which suggests chaotic motion (also
indicated by l1 q 0, Figure 7(b)).

6.2.    a=2
With a=2, added support-excitation may also significantly change the global non-linear

behaviour of the pendulum. For v=0 the bifurcation associated with the divergence
instability, occurring for pcri 1 3·304, is subcritical. Figures 9(a) and (c) show the largest
Lyapunov coefficient plotted versus the load magnitude p, for a weak and a strong initial
disturbance, respectively. The upright pendulum position is in both cases replaced by a
non-zero static equilibrium when the load is increased beyond the critical level. This is seen
as a jumps in l1 (l1 is still negative). Due to the subcritical bifurcation, the stronger
disturbance (Figure 9(c)) pushes the system to the new static equilibrium point also for
values of p slightly less than critical. With a further increase in p, the new equilibrium
position loses stability by a Hopf bifurcation, leading to chaotic motion (l1 q 0).
Numerical simulation reveals that the motion may eventually settle down on a static
equilibrium point after an unpredictably long transient period of chaos. Also, a very strong
initial disturbance has been shown to may cause the system to settle on large amplitude
periodic motion for pQ pcrit , see reference [2].

Figures 9(b) and (d) show l1 versus p for added support-excitation, corresponding to
v=0·75. The figures correspond, like Figures 9(a) and (c) to a weak and a strong initial
disturbance. From Figure 9(b) it is seen that the upright pendulum position is now replaced
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Figure 9. Largest Lyapunov exponent l1 plotted versus the load magnitude p; (a) a=2, v=0; (b) a=2,
v=0·75; (c) a=2, v=0; (d) a=2, v=0·75; total sampling time 2000 s, transient cut-off 1000 s, sampling
frequency 20 Hz. Initial conditions, (a, b): (0·05, −0·07, 0, 0); (c, d): (1, 1·5, 0·5, 0·75). Parameter values: c=0·1,
V=25.

directly by chaotic pendulum motion when p is increased beyond the critical level. Actually,
chaos appears for load levels less than critical, which shows that even the weak disturbance
is sufficient to destabilize the linearly stable upright position. With a stronger initial
disturbance, as shown in Figure 9(d), chaos appears far into the pre-critical range, with
several narrow ‘‘windows’’ however, where the pendulum settles on a static equilibrium
point. As was the case for v=0, the chaotic motion may also for added support-excitation
finally settle down on a static equilibrium. However, this happens, if at all, after a long
and unpredictable time-range.

For the case of the left and the lower right divergence regions (see e.g., Figure 2), no
signs of chaotic behaviour can be traced, with or without excitation of the support. But
for the regions studied by examples in this and in the previous section, the results have
pointed out that chaotic behaviour of the pendulum is more likely to occur with added
support-excitation, compared to the case of a fixed support. Importantly, chaotic dynamics
was shown to be possible for load levels less than critical: i.e., even with the upright
pendulum position linearly stable.

7. SUMMARY AND CONCLUSIONS

Linear stability and non-linear behaviour of the partially follower-loaded elastic double
pendulum with small-amplitude high-frequency (off-resonant) excitation of the support,
has been analyzed.

The method of DPM (direct partition of motion) was used to turn the governing model
equations into autonomous form, by approximating the added support-excitation by
equivalent static forces. Linear stability was investigated and a local non-linear analysis
was performed by using the techniques of centre manifold reduction and normal forms,
as well as by numerical integration of the original equations and by the use of PATH (a
path-following algorithm) applied to the autonomous set of equations. Lyapunov
exponents were computed also, in order to study the global behaviour.

The presence of support-excitation has been shown to affect strongly the linear stability
of the follower-loaded pendulum. For most values of a, excitation of the support stabilized
the system: i.e., a stronger loading is needed to turn the upright position unstable. For
a load arrangement corresponding to a=1·3, the excitation may, however, destabilize the
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system in favour of flutter oscillations. The non-linear behaviour was shown to change,
both quantitatively and qualitatively, when support-excitation was added. Supercritical
bifurcations were seen to turn into subcritical ones when a sufficient amount of
support-excitation was added. This applies to both dynamic and static instabilities, flutter
and divergence, respectively. The domain of chaotic dynamics was also seen to increase:
e.g., with a pure tangential load (a=1) the pendulum behaves chaotically for moderate
load magnitudes when strong support-excitation is applied. Also, for a=2, chaotic
dynamics was seen to appear for load levels less than critical, if a large disturbance was
applied.

This work has shed light upon possible effects of the interaction between follower-type
forces and high-frequency excitation acting upon instability-prone structures. It has been
shown that in many cases stability of the original design can be enhanced by the aid of
high-frequency excitation, but also that this stability may be sensitive to large disturbances.
Also structures subjected to high-frequency excitation are more prone to behave in an
unpredictable chaotic manner. However, with this in mind, it is believed by the author that,
given considerable future work in this area, high-frequency excitation might be of use when
dealing with stabilization of structures.

In this investigation only uni-directional support-excitation was added. Using
bi-directional excitation could change the dynamic behaviour of the pendulum, e.g., by
changing the stability and positions of static equilibrium points and by altering the basins
of attraction for different non-linear solutions. This should be analyzed further. Also, an
experimental investigation of this or similar systems is called for.
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APPENDIX

The non-zero components of the vector b3jkl , are,

b3113 = c, b3114 =−3
4c, b3133 =−1

2, b3144 =−1
2, b3223 = c,

b3123 =−2c, b3124 = 3
2c, b3224 =−3

2c, b3233 = 1
2, b3244 = 1

2,

b3111 = 1
12(12−4p+61v), b3222 =− 1

12(p(3a−7)+9+29v),

b3112 = 1
4(4p−11−41v), b3122 = 1

4(p(a−5)+10+33v), (A1)

and of b4jkl are

b4113 =−7
4c, b4114 = 5

4c, b4133 = 3
2, b4144 = 1

2, b4223 =−7
4c,

b4123 = 7
2c, b4124 =−5

2c, b4224 = 5
4c, b4233 =−3

2, b4244 =−1
2,

b4111 = 7
12(p−3−15v), b4222 = 1

12(p(5a−12)+15+55v),

b4112 = 1
4(19−7p+75v), b4122 = 1

4(p(8− a)−17−61v). (A2)


